Second-order Growth, Tilt Stability, and Metric Regularity of the Subdifferential
نویسندگان
چکیده
This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive-definiteness/semidefiniteness properties of the second-order subdifferential (or generalized Hessian).
منابع مشابه
Tilt Stability, Uniform Quadratic Growth, and Strong Metric Regularity of the Subdifferential
We prove that uniform second order growth, tilt stability, and strong metric regularity of the subdifferential — three notions that have appeared in entirely different settings — are all essentially equivalent for any lower-semicontinuous, extended-real-valued function.
متن کاملHölder Stable Minimizers, Tilt Stability, and Hölder metric Regularity of Subdifferentials
Using techniques of variational analysis and dual techniques for smooth conjugate functions, for a local minimizer of a proper lower semicontinuous function f on a Banach space, p ∈ (0, +∞) and q = 1+p p , we prove that the following two properties are always equivalent: (i) x̄ is a stable q-order minimizer of f and (ii) x̄ is a tilt-stable p-order minimizer of f . We also consider their relation...
متن کاملSecond-order Variational Analysis and Characterizations of Tilt-stable Optimal Solutions in Finite and Infinite Dimensions1
The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems in finite-dimensional and infinite-dimensional spaces. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization. Based on second-order generalized diff...
متن کاملCharacterization of Metric Regularity of Subdifferentials
We study regularity properties of the subdifferential of proper lower semicontinuous convex functions in Hilbert spaces. More precisely, we investigate the metric regularity and subregularity, the strong regularity and subregularity of such a subdifferential. We characterize each of these properties in terms of a growth condition involving the function.
متن کاملSecond-Order Subdifferential Calculus with Applications to Tilt Stability in Optimization
This paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main focus is the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of first-order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013